

Communities and Climate

Presented by the Office of the Vice Chancellor for Research and UNC Carolina Population Center

Communities and Climate Panel

Panel Emcee: Karen Guzzo

Director, Carolina Population Center

Nathan Dollar

Director, Carolina Demography

Fern Hickey

Research Associate, UNC Coastal Resilience Center

Conghe Song

Professor and Chair, Department of Geography and Environment

Nathan Dollar

Director, Carolina Demography

0

Nathan T. Dollar Director of Carolina Demography Carolina Population Center

The Problem and Our Approach

- Extreme weather events threaten lives, destroy property, and expose people to trauma which has long-term effects
- Data are limited
- Research is typically reactive, short-term, and siloed in one discipline.

Flooding in Canton, NC from Tropical Storm Fred Source: Washington Post

Urgent need for policies and programs that promote

Healthy People Sustainable Communities Resilient Ecosystems

Learn

Effective solutions require accelerated integration across fields

Our Approach

- Integrate across disciplines
- Build a platform for longitudinal multi-dimensional data collection
- Develop tools to predict storm impacts on short- and long-term outcomes, model impacts of mitigation and assistance.

How do we do it?

Study Site: Eastern North Carolina

- Predominately rural region
- Environmental, economic, & demographic changes over last 3 decades
- Complex system of rivers, estuaries, sounds, & barrier islands
- Lots of flooding from hurricanes, milder storms, wind, rain, and high tide

Hurricane/Tropical Storm Tracks Across NC since 2000

Source: NOAA

esearc

WEEK

Depth Damage Curves / Dose-Response Relationships

Depth: Predicting Flooding (Rick Luettich, UNC)

ADCIRC Prediction System

Hurricane Florence 2018

Hurricane Dorian 2019

Data on Flood Exposure

Household Survey

Random Selection of Addresses from tax parcel database

Household Survey

ADCIRC Predictions of Sampled Parcels

Site	N	Flooding (Dorian)	Flooding Florence)
East Carteret	423	35%	45%
New Bern	300	0.1%	62%
Hatteras	100	0%	69%
Mainland Hyde	101	68%	59%
Ocracoke	181	76%	3%

RESEARCH

L<u>unc</u>hø Learn

Damage to human populations: household survey

Questions developed with input from all project scientists & community and state stakeholders

- Experiences before, during, and after the storm(s)
- Modules on post-traumatic stress and depressive symptoms
- Disruptions to work school
- Impacts on income and business activity
- Property damage

Luncho Damage to human populations: household survey

- Recruit and train local interviewers and UNC students
- Determine eligibility (i.e., full-time residents)
- Interview all residents ages 15+

Luncho DEEPP Survey – Wave I Learn

- Visited 1,042 Parcels
- 833 (80%) were residential and not too damaged for occupancy. > Contacted 583
- Interviewed 453 HHs
- 673 Individuals (~82% of eligible HH members responded; 90% in Pilot Site!)

Luncho DEEPP Survey – Wave I Learn

Racial and Ethnic Composition of Sample

HOUSING TENURE

- 82% own their homes
- **18%** rent or have some other arrangement

Race/Ethnicity	Pct of Sample
NH White	78.3%
NH Black or African American	15.1%
Hispanic	6.2%
American Indian/Alaskan Native	0.3%

Many Impacted by both Dorian & Florence

Percent of Households Reporting Flood Damage to Home or Property from Hurricane Dorian or Florence

Site	Neither	Florence Only	Dorian Only		Both
East Carteret	11.2%	3.0%	19.5%	/	66.3%
New Bern	32.4%	15.9%	22.1%		29.7%
Hatteras	15.2%	0.0%	81.8%		3.0%
Mainland Hyde	6.8%	0.0%	65.9%		27.2%
Ocracoke	12.5%	0.7%	83.1%		3.7%
TOTAL	17.3%	5.5%	44.4%		32.8%

DEEPP Wave I Pilot Site – Ocracoke, NC

DEEPP Wave I Pilot Site – Ocracoke, NC

Flooding during Dorian on Ocracoke Parcels (ADCIRC Model Results)

	Parcel Flooded	Estimated Water Depth on Flooded Parcels (feet)	Ν
All Parcels	72%	5.2	1592
Sampled Parcels	70%	5.1	181
Primary Residents	80%		104
Second Homes	61%		50
No Residents	89%		27

DEEPP Wave I Pilot Site – Ocracoke, NC

Consequences of Home Damage and Household Displacement

		Residence Type at Interview			
	Total	Renter	Owned home and primary resident	Owned home but not primary resident	
Home could not be lived in after the storm	38%	50%	38%	32%	
Still unlivable at time of interview	38%	78%	23%	50%	
Average # of months home could not be inhabited (only for those who returned)	7.5	-	8.2	6.7	
Average # of places lived	3	4	2	-	
Ν	132	20	80	32	

Psychosocial Health as a Function of Depth & Exposure

- The higher the water relative to floor height, the more likely a home was to be flooded
- Individuals in homes that were flooded experienced a larger number of potentially traumatizing experiences during Hurricane Dorian
- More of those experiences is positively associated with levels of posttraumatic stress and with depressive symptoms, even 12-18 months later

What's Next for Our Team

Evaluate compound flood models near the coast, upstream, and expand to additional river basins throughout the state Innovate in measurement, incorporate in surveys:

- Attitudes toward financial and climate risk
- Decision-making about the future in fragile environments
- Collection of biomarker data
- Benefits of ecosystem services and historical ties for connection to place
- Trade-offs between sustainability and economic opportunity
- Water quality surveillance

UNIVERSITY

• Collection of Biomarker Data

Incorporate green engineering and adaptation vs retreat as policy options for reducing risk

Combine flood modelling over multi-decadal period with dose-response parameters from survey data to project longer-term evolution for people and places

We'd love to hear from you!

Elizabeth Frankenberg e.frankenberg@unc.edu

0

Nathan T. Dollar ntdollar@unc.edu

Thank you! Contact Nathan Dollar at ntdollar@email.unc.edu

Fern Hickey

Research Associate, UNC Coastal Resilience Center

A Landscape Study of Social Equity Data Needs and its Access and Availability to Support the Disaster Resilience of Marginalized Communities

Cassandra R. Davis, Ph.D. (PI), Philip Berke, Ph.D. (Co-PI), Miyuki Hino, Ph.D. (Co-PI) Simona Goldin, Ph.D., Ruth Fetaw, B.A., Fern Hickey, M.A., Megan Lacey, B.A., Tristyn Morgan Christy Fierros, M.A., Will Anderson, M.A., Helena Garcia, M.A. & students in UNC's Public Policy Capstone Class

Purpose of Study

To provide insight on how to transform the disaster risk management community so that equity is an embedded practice that encapsulates the needs of all, including the most marginalized.

Learn

Mixed Methods Study Three Critical Dimensions

Social Vulnerability Metrics

- What quantitative indicators are currently used to inform equity in resilience plans and investments, and what are the implications of those choices?
- How are hazard mitigation and disaster recovery funds distributed in relation to factors like race, income, and housing type?

Plan Evaluation

- To what extent do hazard mitigation and comprehensive plans include equity as a core value to organize the content and format of plans?
- To what extent do hazard mitigation and comprehensive plans include indicators that could be used to document, measure, and monitor equity in disaster resilience?

Community Voice

- How does the disaster risk management community plan for equity and what opportunities exist to better incorporate equity and support the resilience of marginalized communities?
- To what extent are marginalized communities organizing or relying on informal planning or support in the face of local hazards, in place of or in addition to formalized planning and support from the public sector?

Case Study Sites

Key Findings: Social Vulnerability Metrics

Different indicators yield different results on social vulnerability

Buncombe Burke Buncombe Burke 100 75 . 50 Percent POC 25 Edgecombe Mecklenburg Edgecombe Mecklenburg 100 75 50 25 0 0.00 0.25 0.50 0.75 1.000.00 0.25 0.50 0.75 1.00 0.75 0.00 0.25 0.50 0.75 0.25 0.50 1.00 1.000.00 CDC SVI (1 = most vulnerable) CDC SVI (1 = most vulnerable)

Share of population in vulnerable age groups vs. CDC SVI

Percentage of people of color vs. CDC SVI

RESEARCH

Research week

*Each point represents a census tract and tracts are grouped by county

UNIVERSITY

WEEK

searc

Key Findings: Social Vulnerability Metrics

Choice of indicator matters, especially when this data drives funding and policy

Comparing Justice40 disadvantaged and not disadvantaged census tracts as a function of the CDC SVI

DUNC

RESEARCH

Key Findings: Social Vulnerability Metrics

Likelihood of aid denial does not vary substantially across income or housing type, but reason for denial does

Learn

UNIVERSITY

WEEK

Key Findings: Plan Evaluation

Mitigation plans less likely than comp plans to integrate equity as a core value or to include equity-supporting goals

RESEARCH

Figure 9. Extent to which equity is addressed in sampled plans

Learn

Key Findings: Plan Evaluation

Mitigation plans address more hazards, comp plans include more indicators that can be used to assess equity

RESEARCH

Figure 10. Equity Fact Base: Mean number of indicators that could be used to assess equity in comprehensive plans and hazard mitigation plans by category

(N = total number of indicators reviewed for each category)

KEY FINDINGS: Community Voice

- There is little formalized attention to the ways that demographic and socioeconomic factors affect residents' abilities to prepare for, respond to, and recover from disaster
- Current focus of social vulnerability assessment in hazard mitigation and disaster response is on populations with access and functional needs
- Differences in hazard mitigation or disaster outcomes between various population groups in our four NC case study sites are not currently being tracked or evaluated
- Common practices that local agencies in our case sites use to increase disaster communication and support to socially vulnerable populations include:

Translation

Multiple modes of engagement

Partnerships

Targeted support

Next Steps

- Deeper dive into interview data
- Integrating findings across 3 components of study
- > Sharing out results and recommendations

Thank you Contact Fern Hickey at fern@unc.edu

Conghe Song

Professor and Chair, Department of Geography and Environment

Climate Impacts on People's Livelihoods and the Ecosystem Services

Conghe Song Professor and Chair Dept. of Geography & Environment At UNC-Chapel Hill

Climate Impact on Cropland Abandonment

Notes: Y-axis represents percentage of each reason of cropland abandonment provided by the respondents. X-axis represents category of the responses: R1, lack of labor due to migration or aging; R2, crop raiding by wildlife; R3, too far away from the house; R4, not worthwhile for cropping due to high opportunity costs of forgoing employment alternatives; R5, lack of reliable water supply for crop growth; R6, frequent natural disasters such as flooding, drought, insects, and disease.

RESEARCH

UNIVERSITY

WEEK

Climate Impacts on Irrigation Water Supply

Reason of decreased water	Pyuthan	Salyan	Total
Construction activities	2 (4.5%)	1 (1.2%)	3 (2.4%)
Damage of irrigation canals (or spring)	1 (2.3%)	5 (6.0%)	6 (4.7%)
Decreased in forest	2 (4.5%)	1 (1.2%)	3 (2.4%)
Decreasing rainfall	23 (52.3%)	51 (61.4%)	74 (58.3%)
Don't know	3 (6.8%)	1 (1.2%)	4 (3.1%)
Increased population	0 (0.0%)	4 (4.8%)	4 (3.1%)
Increasing pine forest cover	3 (6.8%)	4 (4.8%)	7 (5.5%)
More branches of canal	0 (0.0%)	3 (3.6%)	3 (2.4%)
More used for drinking	2 (4.5%)	4 (4.8%)	6 (4.7%)
Shrinkage of water source	5 (11.4%)	7 (8.4%)	12 (9.4%)
Poor management	3 (6.8%)	2 (2.4%)	5 (3.9%)
Total	44	83	127

Based on a survey of 992 households in spring 2023, 127 households irrigate crops and nearly 60% of them think decreasing rainfall is the primary reason for decreasing water availability for irrigation.

WEEK

Climate Change and Vegetation Interact to Affect Ecosystem Services

RESEARCH

L<u>unch</u>ø Learn

UNIVERSITY

esearc

WEEK

Climate Change Interacts with Vegetation Change to Affect Freshwater Availability

Thank you Contact Conghe Song at csong@email.unc.edu

 Thank you for participating in this Lunch & Learn presentation

UNC-Chapel Hill students, please scan the QR-code above to receive your CLE credit